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Abstract Exponential growth in the number of available
protein sequences is unmatched by the slower growth in
the number of structures. As a result, the development of
efficient and fast protein secondary structure prediction
methods is essential for the broad comprehension of protein
structures. Computational methods that can efficiently deter-
mine secondary structure can in turn facilitate protein tertiary
structure prediction, since most methods rely initially on
secondary structure predictions. Recently, we have devel-
oped a fast learning optimized prediction methodology
(FLOPRED) for predicting protein secondary structure
(Saraswathi et al. in JMM 18:4275, 2012). Data are generat-
ed by using knowledge-based potentials combined with
structure information from the CATH database. A neural
network-based extreme learning machine (ELM) and ad-
vanced particle swarm optimization (PSO) are used with this
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data to obtain better and faster convergence to more accurate
secondary structure predicted results. A five-fold cross-
validated testing accuracy of 83.8 % and a segment overlap
(SOV) score of 78.3 % are obtained in this study. Secondary
structure predictions and their accuracy are usually presented
for three secondary structure elements: a-helix, S-strand and
coil but rarely have the results been analyzed with respect to
their constituent amino acids. In this paper, we use the results
obtained with FLOPRED to provide detailed behaviors for
different amino acid types in the secondary structure predic-
tion. We investigate the influence of the composition,
physico-chemical properties and position specific occur-
rence preferences of amino acids within secondary structure
elements. In addition, we identify the correlation between
these properties and prediction accuracy. The present de-
tailed results suggest several important ways that secondary
structure predictions can be improved in the future that might
lead to improved protein design and engineering.

Keywords Amino acids - Knowledge-based potentials -
Machine learning - Neural networks - Particle swarm
optimization - Protein secondary structure prediction

Introduction

Due to advances in sequencing, millions of protein se-
quences are available in the protein data bank [1]. Yet,
currently we have only about 80,000 solved protein struc-
tures. In principle, this large gap can be filled by protein
structure prediction. Expensive and time consuming experi-
mental protein structure determination methods such as X-
ray crystallography and nuclear magnetic resonance (NMR)
are not possible for large scale applications on the genome
scale. Secondary structures can be predicted cheaply and
easily using a variety of computational methods including
machine learning. Secondary structure prediction is often a
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prerequisite to 3-D structure prediction. Hence developing
faster and more accurate secondary structure prediction
methods remains important. In addition to achieving high
prediction accuracy, it is important to discover the influence
of the content and position specific occurrences of amino
acids on prediction accuracy. This knowledge can result in
improved secondary structure predictions by ensuring that
training models make use of such characteristics to make
more successful and more accurate predictions.

Neural networks have been the most successful computa-
tional approach used for secondary structure prediction. Oth-
er prediction methods that have been successfully applied to
secondary structure prediction include statistical methods,
nearest neighbor methods, hidden Markov models (HMM)
and support vector machines (SVM) [2-22]. On average
about 70 % accuracy was obtained when predictions were
based on a single amino acid sequence. A 10 % improvement
in prediction accuracy was achieved when evolutionary in-
formation from multiple sequence alignments (MSA) was
included [7, 23-32]. Some accuracy improvements were
obtained by including long-range interactions [33, 34]. A
compound pyramid model (CPM) that used a two-level
mixed-modal SVM (MMS) [31] for secondary structure pre-
dictions has the highest reported accuracy of 85.6 % [35].

Our method (FLOPRED) uses novel data based on
knowledge-based potential information calculated by using
the CABS algorithm [36], which captures structural infor-
mation for predicting probable structures. FLOPRED uses a
simple single layer neural network called extreme learning
machine (ELM) [37-39]. The results from this algorithm are
further optimized by using an advanced particle swarm op-
timization (PSO) algorithm [40—46]. These features make
this algorithm highly efficient, accurate and less expensive
to use, compared to other algorithms that apply more com-
plicated algorithms and require larger computational re-
sources for structure prediction. FLOPRED learns from the
information encoded in individual protein sequences and
predicts the three secondary structure elements: a-helix, -
sheet and coil accurately with an average five-fold cross-
validated accuracy of 83.8 % and a segment overlap score
(SOV) [47, 48] of 78.3 % (see Sect. S1 in supplementary
materials ). SOV score is an alternate measure for the eval-
uation of secondary structure prediction methods that is
based on secondary structure segments rather than individual
residues. SOV score is considered superior to traditional
scores obtained through residue-based approach. FLOPRED
is very simple, requires fewer resources and yields an accu-
racy comparable to the best found in the literature. A compre-
hensive discussion of the data, methods and analysis of our
previous study using FLOPRED is given in [49] and its
supplementary materials. Our results are significantly better
(see Tables 1 and 2) than those found in the literature for
studies that do not use the evolutionary information contained
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Table 1 Overall training, validation and testing accuracies and SOV
scores for secondary structures on five-fold cross-validation

Model a-helix (3-sheet Coil Overall
Training-Q; 91.3 78.3 81.2 84.0
Training-SOV 86.0 77.8 75.2 79.4
Validation-Q; 90.5 75.0 79.1 81.8
Validation-SOV 83.8 76.8 71.1 76.3
Testing-Q3 91.1 71.9 78.2 83.8
Testing-SOV 85.8 77.5 71.8 78.3

in multiple sequence alignments, and is comparable to results
that include MSA, although it may not be entirely fair to
compare results of studies that use different datasets. Our
method does not use multiple sequence alignments; however
certain evolutionary information is implicitly embedded with-
in the CATH library of folds.

Rarely have analyses been carried out that look in detail at
the importance of the specific amino acid types for the pre-
dictions, with only a few exceptions [50]. For example, the
results from several secondary structure prediction servers
were studied and reanalyzed to discern patterns of prediction
accuracies with respect to different amino acids [51]. Chou
and Fasman used the frequencies of the occurrences of each
amino acid as a parameter to predict secondary structure [3].
Those studies found that amino acids have different propen-
sities for the three protein secondary structures, a-helix, (-
sheet and coil. Later studies showed that the accuracy of
predictions vary widely, depending on the parameters used
for prediction [52]. These parameters differ depending on the
frequency of occurrence of amino acids and extent of

Table 2 Comparison of FLOPRED predictions against other second-
ary structure predictions in the literature that have used multiple se-
quence alignments (MSA) with the CB513 dataset (* with the exception
of the PHD method which used the RS126 set consisting of 126 proteins
[23] and the SPINE X [50] server which used a dataset of 1833 proteins)

Method Qu% Qz% Qc% Q% SOV%
PHD expert [23]  78.9 73.3 78.8 776  75.0%
GORV [7] 74.0 50.6 82.1 734 708
JNet [25] 78.4 63.9 80.6 764 742
PSIPRED [32] 83.5 70.3 83.8 80.0 765
SPINE X [50] 87.1 71.8 83.0 82.1 79.0%
CPM [35] 87.6 77.7 87.4 85.6 798
FLOPRED 91.1 71.9 78.2 83.8 783

FLOPRED makes use of only sequence and knowledge-based potential
information. FLOPRED had results much better than the best results
from the literature for those studies that did not include MSA (not
given) and comparable with the results for those studies which do
include MSA (as listed in this table), although it may not be entirely
fair to compare results from different datasets
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homogeneity of the secondary structures present in the pro-
teins being studied.

In contrast to earlier studies, the emphasis in this paper is
on the analysis of secondary structure prediction results with
respect to the content and position specific occurrences of
amino acids. An in-depth analysis of amino acid accuracies
obtained by applying FLOPRED to secondary structure pre-
diction is given. In addition, interesting and intriguing pat-
terns in the classification results obtained are highlighted. In
order to discern patterns of prediction that might help to
improve secondary structure prediction accuracy, we inspect
and analyze our results with respect to the behavior of
hydrophobic and hydrophilic amino acids in order to derive
the:

* Correlation between individual amino acid content, in
variation and secondary structure prediction accuracy.

* Contribution of each secondary structure accuracy to the
overall prediction.

» Difference in prediction accuracies for amino acids oc-
curring in the middle and ends of secondary structures.

* Pattern of prediction accuracies for amino acids that
occur in the middle of secondary structure elements
considered separately from those residues that occur at
the ends.

These derivations will then permit us to draw conclusions
to suggest ways to improve secondary structure predic-
tion in future studies. Additionally, our results might be
helpful in the development of future protein design and
protein engineering applications and in the prediction of
the effect of substitutions of individual amino acids on
protein structure.

Note: All tables, figures or section numbers starting with
the letter ‘S’ are found in the supplementary materials.

Data and methods

A three-class secondary structure assignment of the eight
states in the DSSP alphabet [53] is used in our predictions.
The three states that are grouped under helix (H) include the
regular a-helix H, the extended 3 helix G and the com-
pressed m-helix I; E and bridge B are grouped under 3-sheet
(E); while turns T, bends S, blanks and C are classified as
coil. FLOPRED is tested on a subset of proteins culled from
the CB513 [25] dataset. Target sequences that had more than
70 % sequence identity (according to a global Needleman-
Wunsch sequence alignment [54] using BLOSUMS62 [55])
were removed. Sequences with structural similarity, accor-
ding to HSSP [56], the Homology-derived Secondary Struc-
ture of Proteins database, were also eliminated from our data
set. This reduced dataset, of 387 protein sequences is used
for secondary structure predictions. While the number of

proteins is relatively small compared to the original set of
513 sequences, nonetheless you do have a total of 63,383
residues and a significant number of amino acids of each
type, and there is always greater uncertainty for the rarer
amino acids such as tryptophan and methionine. The
FLOPRED algorithm is trained using this data and its effi-
ciency and robustness are tested using five-fold cross
validation.

Knowledge-based potentials

Knowledge-based potentials are extracted by using the
CABS [36] algorithm to obtain 27 features to represent each
amino acid in a sequence. CABS stands for C-a-C-(-side
group protein model where C-« is the a-carbon and C- is
the [-carbon of an amino acid. The associated force field
encodes both short-range and long-range interactions in pro-
teins. It uses a lattice model to represent hundreds of possible
orientations of the virtual a-carbon-a-carbon virtual
bond and uses highly efficient replica exchange Monte
Carlo for sampling the conformational space. The knowledge-
based potentials of the force field include the following
information:

* Protein-like conformational biases.

+ Statistical potentials for the short-range interactions.

* A representation of main chain hydrogen bonds.

+ Statistical potentials describing the side chain interactions.

Please refer to Sect. S4 and Saraswathi et al. [49] and its
supplementary materials for a comprehensive description of
the data generation and methods used. We have given only
an abbreviated account here since we aim to discuss our
previous results with specific emphasis on the behavior of
the amino acid and its various properties with respect to
accuracy. Description of the selection criteria and other de-
tails of the data generating algorithm such as energy calcu-
lations and creation of profile matrices are described in Sect.
S4.1.

FLOPRED—an extreme learning machine classifier

A single layer feed forward-network based classifier called
an extreme learning machine (ELM) is used for secondary
structure predictions here. Compared to other neural net-
works, ELM offers the smallest training error resulting in
rapid convergence and best generalization performance. The
parameters of this model, such as input weights and bias are
randomly assigned and optimized using PSO. The number of
hidden neurons which are limited to between 5 % and 10 %
of the number of training inputs are randomly assigned and
optimized by the PSO. A sigmoidal activation function is
used for the hidden layer and a linear activation function is
used for the output neurons. By assuming the network output
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(Y) is equal to the coded class label, the output weights (W)
are calculated analytically as,

w=YY!

where Y Z is the Moore-Penrose generalized pseudo-inverse
of the hidden layer output matrix Y. An overview of ELM is
given in Sect. S4.2 in the supplementary materials.

Particle swarm optimization

Improved and extended versions of the PSO algorithm
[40—42, 44, 46, 57] have been used to improve secondary
structure prediction accuracy by tuning parameters of the
ELM, such as weights, bias and the number of hidden neurons.
The natural behavior of individuals in groups, such as a swarm
of bees or a flock of birds, is mimicked by the PSO global
optimization algorithm. For example, such a group may need to
collectively solve an optimization problem such as how best to
reach their nest or hive. Through intelligent sampling of the
prismatic volume in the model space, PSO tries to find the best
parameters that are nearest to the global minimum which results
in minimum error in classification. A comprehensive descrip-
tion of this algorithm is given in Sect. S.4.3 in the supplemen-
tary materials. Our predictions make use of these advanced and
efficient PSO algorithms to achieve additional robustness and
significantly improved prediction accuracy.

Results and discussion

Amino acids occur in various quantities and positions in
different secondary structures. Secondary structure predic-
tion results that have been averaged over many iterations
mask the underlying variation in the predictions for individ-
ual amino acids in different secondary structures. We ana-
lyzed prediction results in the context of amino acids with
high and low hydrophobicity index. According to the hydro-
phobicity scale determined by Kyte and Doolittle [58], ami-
no acids such as Ile, Val, Leu, Phe, Cys, Met and Ala are
considered hydrophobic (groupl) with a hydrophobicity in-
dex that ranges between 1.8 and 4.5. Gly, Thr, Ser, Trp, Tyr
and Pro that have values between —1.6 and —0.4, are less
hydrophobic (group 2). His, Asp, Glu, Asn, Gln, Lys and
Arg are very hydrophilic (group 3) with hydrophobicity
values that range between —4.5 and —3.2. We consider resi-
dues in group 1 and group 2 to be hydrophobic and those in
group 3 to be hydrophilic. We examined accuracies with
respect to amino acid content and position specific propen-
sities of amino acids in each secondary structure, to see
whether there is any correlation between these features and
prediction accuracy. This analysis could help to find a better
representation of proteins in the training model with the aim
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of improving prediction accuracy, especially for 3-sheet pre-
dictions that have traditionally had a lower accuracy than for
a-helix and coil structures. A brief discussion of the predic-
tion results obtained by FLOPRED with respect to the three
secondary structures: a-helix, F-sheet and coil is given next.

Secondary structure prediction

Prediction accuracies obtained through a five-fold cross-
validation study are highest for a-helix and lowest for -
sheet with an average accuracy of 80.4 % and an overall Q;
score of 83.8 % for the three secondary structures, as seen in
Table 1. The 3.4 % difference in accuracy between overall
and average accuracy is due to the variability in the content
of amino acids in the three secondary structures. Table 3 and
Figs. S1 and S4 show that the variability in prediction accu-
racies is highest for S-sheet and lowest for a-helix, while coil
falls in the middle. Table 3 and Fig. S3 gives the overall
variability in the content of amino acids across the three
secondary structures and the corresponding difference be-
tween the overall and average accuracy for each amino acid.
It can be seen that as the variability increases, the difference
in accuracy also increases (see Fig. S5).

SOV scores are given in Table 1 along with training and
cross-validation results. The SOV scores for the test data is
observed to be, highest for a-helix at 85.8 %, 77.5 % for (3-
sheet and 71.8 % for coil with an overall SOV score of
78.3 %. FLOPRED results compared favorably with those
studies in the literature that use the CB513 dataset for sec-
ondary structure prediction and use multiple sequence
(evolutionary) information, to develop their models (see
Table 2). Note that, in addition, we are using information
derived from protein sequences and knowledge-based poten-
tials calculated with the CABS algorithm. A detailed discus-
sion of these results can be found in Saraswathi et al. [49] and
in the supplementary materials under Sect. S5. We have
included a brief comparison here. Except in one case (CPM
method, [35]), our overall mean accuracy of 83.8 % is higher
than the accuracies found in the literature (see Table 2).
FLOPRED achieves gains between 1.7 % and 10.4 % in
05 results compared to previous methods and its accuracy
is 1.8 % lower than the best method (CPM). The a-helix
testing accuracy (91.1 %) is still the highest compared to
other studies, while the (§-sheet accuracy is lower than the
CPM method by 5.8 %. Coil accuracies do not fare so well
compared to previous studies. The SOV scores of 78.3 %, is
between 1.8 % and 7.5 % higher than the first four studies
listed and is less than the CPM and SPINE X [50] studies by
0.7 % and 1.5 % respectively. The higher accuracies of
FLOPRED can be attributed to the learning capabilities of
the ELM algorithm and the advanced optimization tech-
niques offered by the PSO algorithms [44] that were used
to tune the parameters of the neural network. When using
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Table 3 Prediction accuracies for five-fold cross-validation are given, for each of the 20 amino acids for each secondary structure, along with

average prediction accuracy

AA Overall AA o-helix [-sheet Coil Average Overall Difference Overall
content % accuracy % accuracy % accuracy % accuracy % accuracy between rank
(content %) (content %) (content %) (variability) (variability) accuracy %
Ala 8.4 95.8 (56.5) 74.8 (15.0) 79.5 (28.5) 83.36 (17.3) 88.02 (0.045) 4.66
Cys 1.5 96.8 (33.3) 86.6 (39.2) 64.9 (27.5) 85.76 (4.8) 86.02 (0.002) 0.27 6
Gly 7.6 96.7 (44.7) 82.3 (20.8) 72.0 (34.5) 78.69 (9.8) 83.10 (0.079) 4.42 14
Thr 5.4 90.6 (55.0) 58.3 (13.0) 83.4 (32.0) 82.27 (17.2) 82.69 (0.011) 0.43 15
Val 7.1 91.7 (51.3) 81.0 (15.5) 80.9 (33.2) 82.75 (14.6) 84.02 (0.003) 1.27 10
Ile 5.6 94.3 (44.2) 87.5 (22.4) 64.6 (33.3) 80.47 (8.9) 83.24 (0.006) 2.77 11
Leu 9.3 92.4 (40.5) 84.6 (28.5) 74.0 (31.0) 81.45(5.2) 84.78 (0.025) 3.33 7
Met 1.9 85.3 (20.7) 54.4 (9.7) 85.4 (69.6) 83.66 (26.0) 85.23 (0.015) 1.57 5
Phe 3.9 86.5 (35.7) 66.3 (15.1) 85.6 (49.2) 82.57 (14.0) 82.81 (0.006) 0.24 16
Trp 1.3 92.4 (52.5) 63.2 (15.9) 84.1 (31.6) 82.12 (15.0) 82.98 (0.014) 0.86 9
Tyr 3.8 90.2 (47.2) 67.7 (16.2) 90.0 (36.6) 83.66 (12.8) 84.47 (0.004) 0.82 8
Pro 4.7 86.1 (34.5) 48.0 (10.9) 84.8 (54.6) 75.02 (17.8) 82.42 (0.103) 7.40 17
Ser 6.3 85.8 (33.7) 46.1 (10.3) 82.2 (56.0) 79.49 (18.7) 83.04 (0.030) 3.56 12
His 2.3 93.2 (40.0) 86.4 (25.5) 68.1 (34.5) 78.20 (6.0) 80.04 (0.011) 1.85 20
Asn 4.7 86.2 (20.2) 63.4 (14.4) 86.5 (65.4) 72.98 (22.8) 81.29 (0.048) 8.31 18
Asp 6.1 89.9 (32.0) 75.6 (23.9) 81.3 (44.1) 71.39 (8.3) 79.76 (0.053) 8.38 19
Glu 6.0 96.0 (51.1) 83.5(21.5) 64.8 (27.5) 77.42 (12.8) 84.12 (0.045) 6.71 13
Gln 3.9 97.2 (40.8) 85.0 (32.9) 59.3 (26.3) 79.93 (6.0) 85.23 (0.035) 5.30
Lys 6.0 84.0 (32.2) 66.1 (23.6) 84.5 (44.2) 82.66 (8.4) 86.52 (0.025) 3.86
Arg 43 92.3(31.2) 76.6 (30.1) 88.4 (38.7) 84.52 (3.8) 86.47 (0.033) 1.95
Mean 5.0 91.1 (39.9) 71.9 (20.1) 78.2 (40.0) 80.4 (12.5) 83.8 (0.003) 34
Stdev 2.1 4.3 (10.0) 132 (8.2) 9.3(12.9) 3.9 (6.3) 2.1 (0.003) 2.7

Hydrophobic amino acids are listed first followed by hydrophilic residues (see Results and discussion section for details). Overall and average
content and their variability is given. The average variability is calculated across the three secondary structures for a particular residue, while the
overall variability is calculated with respect to all amino acids in all secondary structures (over the complete data set). The difference in overall and
average accuracy shows the contribution of each amino acid to the discrepancy in these two values. Higher variability in amino acid representation
leads to increasing difference between average and overall accuracy, as shown in Fig. S5. As the variability increases, the difference in accuracies also
increase (see Fig. S5). The last column gives the overall accuracy ranking (where 1 is the highest and 20 is the lowest)

neural networks and other machine learning techniques,
improved accuracies might be obtained by having a good
representation of the test data in the training models. We have
investigated whether, the content for all 20 amino acids is
adequately represented in the data set (to enable the training
model to learn about each amino acid), by analyzing results at
the amino acid level.

Amino acid content and secondary structure accuracy

The secondary structure predictions of 63,383 amino acids
that are present in 387 proteins are analyzed here. Amino acids
are present in proteins in varying quantities (see Table 3 and
Fig. S3), with large and small variations in frequency of
occurrence, which in turn lead to variation in prediction accu-
racies for different amino acids (see Fig. S4). The overall
rankings range from the highest accuracy (rank 1) for alanine

to the lowest accuracy (rank 20) for histidine. It can be
observed from Table 3 that there is not much correlation
between the content and corresponding secondary structure
prediction accuracies and there are not any discernible patterns
with regard to the effect of content on prediction accuracy
(See Sects. S5.2 and Fig. S2). Although Ala has the largest
content (8.4 %) and holds the top rank for accuracy, other
residues like Met and Trp with very low content still enjoy
higher ranks than some residues with much larger content. We
investigated further to examine if a pattern of low content with
high variability across the three secondary structures, results
in correspondingly lower prediction accuracies.

Correlation between variability, content and accuracy

In this section the overall content, variability, accuracy and
ranking of amino acids are discussed. The discussion for
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each secondary structure: a-helix, (3-sheet and coil is given
under Sects. S5.3—-S5.6.

Overall amino acid content and variability in secondary
structures

Amino acid content is shown in Table 3 and Figs. S3a, S3b
and S3c for a-helix, B-sheet and coil. The variation in amino
acid content is highest for a-helix and coil while they are
comparatively more uniform for S-sheet conformations. Our
data shows that 39.9 % of amino acids occur in a-helices and
individual amino acid contents vary between 20.2 % and
56.5 % in a-helix. Only 20.1 % of amino acids occur in J-
sheet and individual amino acid contents vary between 9.7 %
and 39.2 % in (-sheet. The remaining 40 % of amino acids
occur in coil and amino acid contents vary between 27.5 %
and 69.6 % in coil. It is interesting to note that the variability
of ten out of 12 hydrophobic type residues, are the lowest
(between 3.8 % and 12.8 %), while Gly has a high variability
at 22.8 %. The variability for the hydrophobic Ala (17.3 %)
and other hydrophilic residues are above mid-range between
12.8 % and 18.7 %. Pro has the highest variability at 26 %,
which is almost seven times larger than the lowest variability
for Cys (3.8 %).

Overall amino acid accuracies in secondary structures

The correlation between the content and accuracy for a-helix
is 0.57, for (-sheet 0.77 and for coil it is 0.58. There is a
negative correlation of —0.12 between variability and accu-
racy. Correlation between average content and overall accu-
racy, for all three secondary structures, is only 0.14. This
might be due to the fact that most of the variances in accu-
racy for individual secondary structures are being hidden,
where the higher accuracy in one secondary structure ele-
ment is offset by a corresponding lower accuracy for the
same amino acid in another secondary structure element.

Table 3 and Figs. S4a, S4b and S4c give the a-helix, (-
sheet and coil classification accuracies for the 20 amino acids
for all three secondary structures. Here, a-helix accuracies
range between 84 % and 97.2 %, whereas 3-sheet accuracies
are much lower and range only between 46.1 % and 87.5 %.
Coil accuracies are slightly better and range between 64.6 %
and 90 %. Average accuracies for a-helix, 0-sheet and coil
are 91.1 %, 71.9 % and 78.2 % with standard deviation of
4.3 %, 13.2 % and 9.3 % respectively.

The amino acid deviations from mean accuracy differ
widely for different secondary structures. When deviations
from their average mean for each of the three secondary
structures are plotted separately, as shown in Fig. 1, some
interesting patterns emerged. Figure 1d plots the deviations
from the overall mean accuracy (83.8 %) for all amino acids.
The largest negative deviation is for hydrophilic Asp at
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—4.05 % and the largest positive deviation is for hydrophobic
Ala at 4.2 %. The positive deviations for a-helix and 3-sheet
in Fig. 1a and b are compensated by the opposite deviation
for coil in Fig. lc. We find that the overall pattern of de-
viations is quite different from the tendencies for individual
secondary structures. There is no noticeable trend in these
deviations except that the hydrophilic residues seem to have
slightly larger negative deviations compared to hydrophobic
residues.

The variations in residue frequencies among the three
secondary structures seem to influence the overall accuracy
for all 20 amino acids as shown in the accuracy rankings in
Fig. 2a, b and c. There is also a tendency for « helix and §
sheet to have enhanced accuracy for the same amino acids
for many of the residues (see Fig. 2d). Opposing this is the
lower accuracy for the same amino acids in coil. In general,
we can see higher accuracies in the form of larger positive
deviations when content for an amino acid is higher in one
secondary structure compared to its content in the other two
secondary structures. The hydrophilic amino acids do well in
coil predictions while the hydrophobic residues do well in a-
helix and (-sheet. However, in general the hydrophilic
residues do poorly in the final predictions since their
gains in coil predictions are offset by their poor perfor-
mance in the other two secondary structures. Better
overall prediction accuracies are likely, when content
in each secondary structure is evenly distributed (or at
least have lesser variations) among the three secondary
structures, although there are some exceptions to these
rules.

Summary of analysis on content, variation and accuracies
in secondary structures

The length and amino acid composition of secondary struc-
tures and the fold compositions of proteins that are used in
the data can greatly impact and influence the final accuracy
obtained in secondary structure prediction. Our observations
indicate that a greater presence of an amino acid in a partic-
ular secondary structure does not assure higher accuracy for
that residue in that secondary structure. Amino acids which
appear in very small quantities in the data, like Cys, Met and
Trp and show low variability still do well, since their content
is evenly distributed among all three secondary structures.
Some trend is visible for the hydrophilic residues in (-sheet
where there is very low content between 10 and 15 %, leads
to a very low ranking of between 16 and 20. In other cases
even if there is a fairly even distribution of residues among
the three secondary structures, the ranking is still low for
residues in coil, unless a majority of the residues present are
in coil.

The discussions above indicate that higher a-helix con-
tent will have positive influence, (-sheet content will
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Fig. 1 Accuracies—as deviations from the mean for overall and sec-
ondary structure average accuracies. Amino acids are listed according
to their deviation values (from the largest negative deviation to the
highest positive deviation), for all figures. There seems to be some clear
differences between hydrophobic and hydrophilic residues in each of
the individual secondary structure types shown in a, b and ¢. The amino
acid deviations from mean accuracy (91.1 % for a-helix, 71.9 % [3-sheet
and 78.2 % for coil) differ widely for different secondary structures. d

generally negatively impact a residue’s overall accuracy,
which can be slightly counteracted with a higher coil content
which has better accuracies. We observe that the ranking
tendencies for a-helix and (-sheet match their overall accu-
racies more closely than they do with coil. The highest
overall ranking is for Ala, followed by Lys and Arg, while
the lowest rankings are for Asn, Asp and His. Some residues
like Val, Ile and Trp have high rankings for a-helix and g-
sheet, but they have low overall ranking due to very low
rankings in coil, while some residues like Ala, Lys and Arg
have final high ranking despite having only an average
ranking for the individual secondary structures. Due to these
tendencies the loss or gain in ranking from two of the
secondary structures is commonly equalized by the tenden-
cies in coil. Hence the final overall accuracies for each of the
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plots the overall mean deviations from the mean accuracy of 83.8 % for
all amino acids. Hydrophilic residues seem to have larger negative
deviations compared to hydrophobic residues. The overall deviations
compensate for the complimentary differences in the individual sec-
ondary structures and show much lower overall deviations for all
residues, which could be misleading. The overall accuracies appear to
be higher than they actually are for the individual secondary structures

20 amino acids do not reflect the individual characteristics
separately for each of the three secondary structures.

The comparative studies for content vs. accuracy leads to
a clear way forward to improve secondary structure predic-
tions. Consider predicted probabilities for all positions in a
sequence. If each amino acid and each secondary structure
type has a further factor based on the accuracy from the
rankings in Fig. 2a, b and c, then it will give a higher
probability to the cases that are most accurate in their pre-
dictabilities. This would be a straightforward procedure to
implement. Next, we look at prediction accuracies for resi-
dues that appear in the middle of secondary structures in
comparison with those that appear at the ends of secondary
structures, to see whether there is any position specific pref-
erence with respect to accuracy.
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Fig. 2 Trends in accuracy rankings for secondary structures are given
here. Amino acids are listed according to their overall ranking for a, b
and c¢. The accuracies obtained for each amino acid in «-helix, 3-sheet
and coil (a, b and ¢) are ranked from 1 (highest accuracy) to 20 (lowest
accuracy). These rankings are shown as blue («-helix), green (3-sheet)
and red (coil) lines, with the ranks for this particular secondary structure
indicated in red to the right of each point marking an amino acid. The
overall ranking for each amino acid is given on the x-axis (ranks 1 to
20), which differ a lot from the rankings given inside each figure. d
shows the deviations from the overall mean accuracy of 83.8 % for
amino acids; In d, hydrophobic amino acids are listed first followed by
hydrophilic residues (see Results and discussion section for details).

Influence of position specific amino acid occurrences
on secondary structure prediction accuracies

Position specific preferences of amino acids result in a vari-
ety of content in the middle and ends (see Table S2 and
Fig. S7a) of secondary structures. A residue is considered
to be an end residue, if it is part of the first three or the last
three residues of a secondary structure. All other residues are
considered to occur in the middle of secondary structures.
We find that overall prediction accuracies differ considerably
for residues that are present in the middle vs. ends of sec-
ondary structures (see Table 4).
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Positive deviations are marked in red and the negative deviations are
marked in blue. Positive trends (higher accuracies) for a-helix (a) and
B-sheet (b) are at least partially offset by opposite tendencies for the
same residues in coil (as can be seen in d for residue types Val, lle, Leu,
Met, Phe, Trp, Tyr, His, Pro, Ser, Asn, Asp, Glu, Lys and Gly).
Consequently, the final overall accuracies for each of the 20 amino
acids do not reflect their individual accuracy characteristics in each of
the three secondary structure states. One way to immediately improve
secondary structure predictions would be to introduce amino acid
specific weights according to the values seen in d. The amino acids
predicted in a particular secondary structure having red values in this
figure would receive stronger weights than the ones that are in blue

Comparative analysis of correctly predicted residues
in the middle vs. ends of secondary structures,
when these two regions are considered collectively

Average content in the middle of secondary structures is
45.5 % for all amino acids (Table S2). However, the content
in the middle regions vary widely when we consider each of
the secondary structures individually. For longer a-helix
structures, there will be more residues specified as being in
middle regions than in end regions. Accuracy for middle
regions range between 32.8 % and 56 % with an average
accuracy of 49 %. The accuracy for end regions range
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Table 4 Errors—in the middle
and ends of secondary structures AA % errors ‘in the middle’ % errors ‘at the ends’
are shown below
a-helix [-sheet Coil Q3 a-helix (-sheet Coil Q3
Ala 1.5 1.5 6.9 33 98.5 98.5 93.1 96.7
Cys 2.9 8.0 1.5 4.1 97.1 92.0 98.5 95.9
Gly 7.8 8.1 34 6.4 922 91.9 96.6 93.6
Thr 9.8 44 7.6 7.3 90.2 95.6 92.4 92.7
Val 9.2 2.5 17.2 9.6 90.8 97.5 82.8 90.4
Ile 0.0 2.7 11.0 4.6 100.0 97.3 89.0 95.4
Leu 0.2 4.7 13.2 6.1 99.8 95.3 86.8 93.9
Met 0.0 0.0 4.7 1.6 100.0 100.0 95.3 98.4
Phe 2.5 0.0 21.4 8.0 97.5 100.0 78.6 92.0
Trp 0.0 2.8 16.5 6.4 100.0 97.2 83.5 93.6
Tyr 0.0 0.0 20.1 6.7 100.0 100.0 79.9 93.3
Pro 0.0 7.7 16.7 8.1 100.0 92.3 83.3 91.9
Hydrophobic amino acids are Ser 1.7 5.1 6.3 4.4 98.3 94.9 93.7 95.6
lilsltid ﬁrsF folloy\(/ied by }}l{ydrol; His 11.4 0.2 5.3 5.6 88.6 99.8 94.7 94.4
‘;’nélji:zlfsi?oicéezt(iff o de. Asn 3.7 3.8 27 34 9.3 96.2 973 966
tails). There is a consistently and Asp 0.3 4.6 4.7 32 99.7 95.4 95.3 96.8
strikingly higher error rate for Glu 5.0 15.3 9.0 9.7 95.0 84.7 91.0 90.3
predictions at the ends of sec- Gln 15.5 42 00 65 84.5 95.8 1000 935
ondary structure segments for all
amino acids in all secondary Lys 24 5.9 8.6 5.6 97.6 94.1 91.4 94.4
structure types, while there are Arg 6.9 7.4 10.4 8.2 93.1 92.6 89.6 91.8
very few errors that occur in the Mean 4.0 4.4 9.4 5.9 96.0 95.6 90.6 94.1

middle

between 44 % and 67.2 % with an average accuracy of 51 %
(see Table S3). The residues that are correctly predicted seem
to be distributed evenly between the two regions, while the
residues that are incorrectly predicted seem to occur over-
whelmingly at the ends regions.

Table 5 shows amino acid content variation at the ends
regions, for the three secondary structures. In contrast to
correct predictions, an overwhelming majority of errors oc-
cur at the ends of secondary structures. Table 4 and Fig. S6
show errors that occur in the middle vs. ends of secondary
structures. Figure 3 shows that the ends exhibit large varia-
tion in their error occurrence.

All prediction errors (100 %) for Ile, Met, Trp and Tyr in
a-helix (see Table 4 and Fig. S6-a) are only at the ends,
although the content for these residues range only between
25.1 % and 39.3 % for the ends regions. The lowest error for
End regions occur for Gln (84.5 %) followed by His at
88.6 % (their contents are 33 % and 41.7 %, respectively).
The complement of these error percentages occur for the
middle of a-helix and are limited to between 0 % and 10 %
for 18 out of the 20 amino acid types.

All prediction errors (100 %) that occur for Met, Phe and
Tyr are only at the ends of O-sheet (see Table 4 and Fig. S6-
b), although their content is around 70 %. The lowest error is

for Glu (84.7 %), but this is still very high. Errors in the
middle of (3-sheet are limited to between 0 % and 10 % for 19
out of 20 amino acid types.

All prediction errors in coil for Gln (100 %) occurs only at
the ends (see Table 4 and Fig. S6-c) although ends content is
about 60 %. The lowest error occurs for Phe (78.6 %) and Tyr
(79.1 %). The errors for coil in the middle of secondary struc-
tures are larger compared to the other two secondary structures.

Summary of analysis of predictions in the middle vs. ends
of secondary structures

Ends predictions differ widely for different amino acids. It is
well known in structure prediction that the determination of
boundaries between secondary structures states along the
sequence is a common problem. What we are seeing here is
areflection of this type of prediction problem. Some residues
have higher predictions accuracies for a particular secondary
structure compared to others. For example, predictions for
residues such as Met or Ile for a-helix and (-sheet are much
more reliable than their predictions for coil. These statistics,
gathered for representative sets of proteins, can be applied to
improve secondary structure predictions for some of these
residues by introducing different reliability factors for the
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Table 5 Amino acid content at
the ends with their standard
deviations across the three
secondary structures (var) is
shown here

Hydrophobic amino acids are
listed first followed by hydro-
philic amino acids (see Results
and discussion section for de-
tails). The content values reflect
some well-known characteris-
tics. For example, turns that are
considered to be coil are known
to be particularly enriched in
Gly, Pro, Ser, Asn and Asp,
which are seen to have the
highest values here. The values
inside the brackets show the error
% at the ends of secondary
structures and their standard de-
viations across the three second-
ary structures in the last column

AA % content and errors in the ends regions
a-helix (error) (-sheet (error) Coil (error) Var (error var)

Ala 36.5 (14.2) 22.4 (36.2) 41.2 (29.0) 9.8 (11.2)
Cys 17.1 (25.8) 43.1 (28.8) 39.7 (21.3) 14.1 (3.8)
Gly 12.3 (32.4) 15.3 (49.1) 72.4 (18.4) 33.9(15.4)
Thr 20.7 (24.0) 30.8 (30.8) 48.5 (26.9) 14.1 (3.4)
Val 17.5 (10.1) 49.9 (18.7) 32.7 (44.7) 16.2 (18.0)
Ile 19.7 (11.2) 44.1 (21.0) 36.2 (50.5) 12.5 (20.5)
Leu 33.5(11.9) 29.3 (22.5) 37.2 (44.3) 4.0 (16.5)
Met 23.5(13.1) 28.0 (26.7) 48.6 (39.1) 13.4 (13.0)
Phe 24.9 (22.0) 34.6 (20.7) 40.6 (44.2) 7.9 (13.2)
Trp 28.2(17.2) 32.2 (15.5) 39.6 (46.3) 5.8(17.3)
Tyr 26.1 (23.0) 38.0 (22.3) 35.8 (34.6) 6.3(6.9)
Pro 25.2(19.0) 12.6 (50.3) 62.2 (21.6) 25.8(17.4)
Ser 29.1 (31.0) 18.4 (49.6) 52.4 (24.1) 17.4 (13.2)
His 25.2 (27.8) 27.5 (44.0) 47.3 (21.0) 12.2 (11.8)
Asn 23.4 (33.4) 13.2 (69.3) 63.4 (21.6) 26.5 (24.8)
Asp 26.3 (29.5) 14.0 (60.8) 59.7 (26.0) 23.6 (19.2)
Glu 45.1 (19.6) 17.3 (47.1) 37.6 (23.0) 14.4 (15.0)
Gln 35.4 (19.9) 24.2 (47.5) 40.4 (25.7) 8.3 (14.6)
Lys 36.2 (22.9) 22.0 (41.0) 41.8 (14.8) 10.2 (13.4)
Arg 35.1(22.8) 19.4 (27.9) 45.5 (25.0) 13.1 (2.6)
Mean 27.1 (21.5) 26.8 (36.5) 46.1 (30.1) 14.5 (13.6)

different situations. Although the average overall content for
all amino acids is 45.5 %, there are large variations (between
middle regions and ends) in the amino acid content for each

of the three secondary structures (Table S2).

Fig. 3 Errors at the ends of
secondary structures
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regions does not yield a clear picture of the underlying
patterns in predictions, although we found that most of the
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no correlations between higher content and higher accuracy
for individual secondary structures for middle vs. ends re-
gions. Aggregating results without considering position spe-
cific preferences (for middle vs. ends regions), masks the
large differential behavior of errors for different amino acids.

Next, we look at prediction vs. content patterns for residues
that appear in the middle and ends regions separately, in order to
understand the nature of these errors and draw our conclusions.

Comparative analysis of errors that occur in the middle
vs. ends of secondary structures, when these two regions
are considered separately

If we consider residues that occur only in the middle regions
(separately, from those residues that appear at the ends), the
percentage of residues that are correctly predicted (see
Table S4) is very high and ranges between 89.7 % and
98.6 %. Mean overall accuracy for hydrophobic residues is
96 % vs. 95 % for hydrophilic residues. Hence the overall
errors in prediction in the middle regions are very low and
range between 1.4 % and 10.3 % (average of 4.5 %).

Table 5 gives the content and errors in prediction for
residues that occur at the ends of secondary structures. Errors
in prediction for residues in individual secondary structures
(at the ends) differ widely, as seen Fig. S7b. The content in
the ends regions show large variability across the three
secondary structures, that possibly leads to large errors.
Errors occurring at the ends of a-helix are lower than those
occurring in the other two secondary structures. Errors oc-
curring in S-sheet are lower than those occurring in coil for
some hydrophobic residues while the errors are generally
higher for all hydrophilic residues. In contrast to a-helix and
[-sheet, hydrophilic residues at the ends of coil have better
accuracies than hydrophobic residues. The variations in er-
rors at the ends of secondary structures are discussed more
extensively in the supplement.

Although it appeared during the above discussions that the
predictions at the ends of secondary structures are very prone
to errors (showing over 90 % errors when analyzed with
respect to overall content), we see a brighter picture here with
much lower errors (see Fig. S7b and Table 5) when the
residues are considered only with respect to content at the
ends. Table S4 indicates that an average of 70.6 % of residues
that appear at the ends of secondary structures are correctly
predicted. The average accuracy for the hydrophobic residues
is 72.5 % (with variation of 12.3 %) and 67.8 % (with much
higher variation of 19.7 %) for hydrophilic residues.

Contrary to what we saw earlier, the variations (average of
13.6 %) in errors are more than twice as much for the ends
predictions when compared to variations for residues in the
middle (5.8 %). The larger variations possibly lead to a
higher error rate (between 25 % and 41.5 %) and less reli-
ability for ends predictions. The highest errors are for Gly,

His, Pro, Ser, Asn, Asp and Gln. Most of these residues have
high variations in content except for His and Gln.

Summary of pattern of predictions at the ends regions
of secondary structures

The correlation coefficient between content and errors at the
ends of secondary structures are —0.19 for a-helix, —0.8 for
(-sheet and —0.55 for coil. There is a strong negative corre-
lation between content and errors for all three secondary
structures, with this relationship being much stronger in g-
sheet than it is for the other two secondary structures. The
content for correct predictions is dominated by a-helix struc-
tures, while those for errors are dominantly for coil struc-
tures. So, it is possible that a paucity of residues contributes
to the low accuracies of 3-sheet compared to other structures.
a-helices are also much longer than the other two secondary
structures on average and hence for middle regions, the
number of a-helix residues is larger than it is for G-sheet
which occur on average in shorter lengths and in smaller
number of cases compared to both a-helix and coil. The
residues listed for a-helix and [3-sheet as having the highest
errors at ends regions do correspond to residues having lower
content, but there is no such relationship for residues in coil.

Conclusions

A five-fold cross-validation for predictions yielded 91.1 %
accuracy for a-helix, 71.9 % for (3-sheet and 78.2 % for coil,
with an overall Q5 score of 83.8 %. These results have been
analyzed with respect to their amino acid content in order to
investigate possible reasons for lower accuracies of F-sheet
and to discover patterns that might be used to improve
secondary structure predictions. We found that each amino
acid in the three secondary structures has its own prediction
pattern. Considering prediction results only at the secondary
structure level masks these patterns, which could be gainful-
ly used to improve classification of secondary structures.
FLOPRED seems to have very good prediction accuracies
for residues, which occur in the middle of secondary struc-
tures (over 90 %) and has nearly 70 % accuracy for residues
that occur at the ends of structures. Amino acids with lower
content or uneven distribution among the three secondary
structures may have lower prediction accuracies. We find
that there is some correlation between the content of amino
acids in each of the secondary structures and their prediction
accuracies. Hydrophobic residues tend to have higher pre-
diction accuracies compared to hydrophilic residues. The
lower accuracies for J-sheet seem to be related to its poor
representation in the data set in comparison with a-helix and
coil. A more uniform representation of residues in all three
secondary structures might lead to better secondary structure
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prediction accuracies. We find that amino acid predictions
differ for middle vs. ends regions in all three secondary
structures. Errors in the Middle regions occur mostly for a
few residues. Errors in predictions occur primarily at the
ends, where only about 70 % of residues are predicted
correctly. Some of these statistics can be used to improve
prediction accuracies. Those residues with large errors are
associated with lower content at the ends regions for a-helix
and (-sheet but this correspondence does not hold for resi-
dues in coil. It might be possible to achieve higher accuracies
(if ends predictions could be improved) by building a train-
ing model that has an even representation of all amino acids
in all three secondary structures, with separate consideration
of the middle and the ends regions.
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